With
the global price of carbon emissions credits expected to rise, SP rock could
become even more valuable. However, in order to achieve substantial CO2 sequestration
in SP rock, the somewhat sluggish chemical reactions that naturally fix CO2
require a jump start.
It's
time to economically value the greenhouse gas-trapping potential of mine waste
and start making money from it, says mining engineer and geologist Michael
Hitch of the University of British Columbia (UBC).
Hitch studies the value of mine waste rock for its CO2-sequestration potential,
or "SP." He says mining companies across Canada will, in future, be
able to offset CO2 emissions with so-named "SP rock," and within 25
years could even be selling emissions credits.
Digging,
trucking and processing make mining an energy-intensive industry that emits
greenhouse gases. However, mine waste rock that is rich in the mineral
magnesium silicate has an inherent ability to react with CO2 and chemically
"fix" it in place as magnesium carbonate-an ability that can be
greatly enhanced with some processing.
Hitch
and his colleagues note that this capacity for CO2 fixation can be five to ten
times greater than total greenhouse gas production from some mine operations.
Nickel, diamond, copper, chromite, platinum, palladium, talc, and asbestos
mines could all be contenders. Some large mines, the researchers add, could fix
5 million tonnes or more of CO2 per year.
"I
don't like waste," asserts Hitch. "I like to see efficient use of the
resources."
Instead
of using just 1 per cent of the materials from a big mining pit, he explains, a
company could receive value from the non-commodity rock. "All of a sudden
this material starts having value, and this material starts taking on a
position in the company's cash flow as a by-product," says Hitch, adding,
"It really kind of changes the dynamics of the mining operation."With
the global price of carbon emissions credits expected to rise, SP rock could
become even more valuable. However, in order to achieve substantial CO2
sequestration in SP rock, the somewhat sluggish chemical reactions that
naturally fix CO2 require a jump start.
Two
of the team's primary goals are to measure the rate of CO2 fixation in mine
waste rock and tailings in a lab setting and to speed up the process. Team
members have already observed that CO2 fixation is greatly accelerated in mine
tailings, presumably due mainly to the large surface area exposed and available
to react after rocks are crushed into small particles.
Dipple's
lab reports that their previous research has demonstrated that CO2 is trapped
in mineral precipitates at rates of up to 50,000 tonnes per year within
tailings during mine operations, and continues to be sequestered after mine
operations cease. Rates of fixation are limited by the dissolution of CO2 in
water and one area of investigation involves increasing the concentration of
CO2 supplied to slurry similar in chemical composition to tailings process
water.
For further information
visit: http://www.energy-daily.com/reports/Researchers_tap_into_CO2_storage_potential_of_mine_waste_999.html
No comments:
Post a Comment